
MINDS: Architecture & Design

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 06-022

MINDS: Architecture & Design

Varun Chandola, Eric Eilertson, Levent Ertoz, Gyorgy Simon, and

Vipin Kumar

July 14, 2006



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
14 JUL 2006 2. REPORT TYPE 

3. DATES COVERED 
  00-07-2006 to 00-07-2006  

4. TITLE AND SUBTITLE 
MINDS: Architecture & Design 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Minnesota,Department of Computer Science and
Engineering,200 Union Street SE 4-192 EECS 
Building,Minneapolis,MN,55455-0159 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

22 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Book chapter in Data Warehousing and Data Mining Techniques for Computer Security, Springer, 2006

MINDS: Architecture & Design

Varun Chandola, Eric Eilertson, Levent Ertöz, György Simon and Vipin
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Department of Computer Science, University of Minnesota,
{chandola,eric,ertoz,gsimon,kumar}@cs.umn.edu

Summary. This chapter provides an overview of the Minnesota Intrusion Detec-
tion System (MINDS), which uses a suite of data mining based algorithms to address
different aspects of cyber security. The various components of MINDS such as the scan
detector, anomaly detector and the profiling module detect different types of attacks
and intrusions on a computer network. The scan detector aims at detecting scans
which are the percusors to any network attack. The anomaly detection algorithm is
very effective in detecting behavioral anomalies in the network traffic which typi-
cally translate to malicious activities such as denial-of-service (DoS) traffic, worms,
policy violations and inside abuse. The profiling module helps a network analyst
to understand the characteristics of the network traffic and detect any deviations
from the normal profile. Our analysis shows that the intrusions detected by MINDS

are complementary to those of traditional signature based systems, such as SNORT,
which implies that they both can be combined to increase overall attack coverage.
MINDS has shown great operational success in detecting network intrusions in two
live deployments at the University of Minnesota and as a part of the Interrogator
architecture at the US Army Research Labs Center for Intrusion Monitoring and
Protection (ARL-CIMP).

Key words: network intrusion detection, anomaly detection, summarization, pro-
filing, scan detection

The conventional approach to securing computer systems against cyber threats is
to design mechanisms such as firewalls, authentication tools, and virtual private
networks that create a protective shield. However, these mechanisms almost al-
ways have vulnerabilities. They cannot ward off attacks that are continually being
adapted to exploit system weaknesses, which are often caused by careless design and
implementation flaws. This has created the need for intrusion detection [6], secu-
rity technology that complements conventional security approaches by monitoring
systems and identifying computer attacks.

Traditional intrusion detection methods are based on human experts’ extensive
knowledge of attack signatures which are character strings in a messages payload
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that indicate malicious content. Signatures have several limitations. They cannot
detect novel attacks, because someone must manually revise the signature database
beforehand for each new type of intrusion discovered. Once someone discovers a new
attack and develops its signature, deploying that signature is often delayed. These
limitations have led to an increasing interest in intrusion detection techniques based
on data mining [12, 22, 2].

This chapter provides an overview of the Minnesota Intrusion Detection System
(MINDS1) which is a suite of different data mining based techniques to address dif-
ferent aspects of cyber security. In Section 1 we will discuss the overall architecture
of MINDS. In the subsequent sections we will briefly discuss the different components
of MINDS which aid in intrusion detection using various data mining approaches.

1 MINDS - Minnesota INtrusion Detection System

Fig. 1. The Minnesota Intrusion Detection System (MINDS)

Figure 1 provides an overall architecture of the MINDS. The MINDS suite contains
various modules for collecting and analyzing massive amounts of network traffic.
Typical analyses include behavioral anomaly detection, summarization, scan detec-
tion and profiling. Additionally, the system has modules for feature extraction and
filtering out attacks for which good signatures have been learnt [8]. Each of these
modules will be individually described in the subsequent sections. Independently,
each of these modules provides key insights into the network. When combined, which
MINDS does automatically, these modules have a multiplicative affect on analysis. As
shown in the figure, MINDS system is involves a network analyst who provides feed-
back to each of the modules based on their performance to fine tune them for more
accurate analysis.

1 www.cs.umn.edu/research/minds
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While the anomaly detection and scan detection modules aim at detecting actual
attacks and other abnormal activities in the network traffic, the profiling module
detects the dominant modes of traffic to provide an effective profile of the network to
the analyst. The summarization module aims at providing a concise representation
of the network traffic and is typically applied to the output of the anomaly detection
module to allow the analyst to investigate the anomalous traffic in very few screen-
shots.

The various modules operate on the network data in the NetFlow format by
converting the raw network traffic using the flow-tools library 2. Data in NetFlow

format is a collection of records, where each record corresponds to a unidirectional
flow of packets within a session. Thus each session (also referred to as a connec-
tion) between two hosts comprises of two flows in opposite directions. These records
are highly compact containing summary information extracted primarily from the
packet headers. This information includes source IP, source port, destination IP, des-
tination port, number of packets, number of bytes and timestamp. Various modules
extract more features from these basic features and apply data mining algorithms
on the data set defined over the set of basic as well as derived features.

MINDS is deployed at the University of Minnesota, where several hundred million
network flows are recorded from a network of more than 40,000 computers every day.
MINDS is also part of the Interrogator [15] architecture at the US Army Research
Labs Center for Intrusion Monitoring and Protection (ARL-CIMP), where analysts
collect and analyze network traffic from dozens of Department of Defense sites [7].
MINDS is enjoying great operational success at both sites, routinely detecting brand
new attacks that signature-based systems could not have found. Additionally, it
often discovers rogue communication channels and the exfiltration of data that other
widely used tools such as SNORT [19] have had difficulty identifying.

2 Anomaly Detection

Anomaly detection approaches build models of normal data and detect deviations
from the normal model in observed data. Anomaly detection applied to intrusion
detection and computer security has been an active area of research since it was orig-
inally proposed by Denning [6]. Anomaly detection algorithms have the advantage
that they can detect emerging threats and attacks (which do not have signatures or
labeled data corresponding to them) as deviations from normal usage. Moreover, un-
like misuse detection schemes (which build classification models using labeled data
and then classify an observation as normal or attack), anomaly detection algorithms
do not require an explicitly labeled training data set, which is very desirable, as
labeled data is difficult to obtain in a real network setting.

The MINDS anomaly detection module is a local outlier detection technique based
on the local outlier factor (LOF) algorithm [3]. The LOF algorithm is effective in
detecting outliers in data which has regions of varying densities (such as network
data) and has been found to provide competitive performance for network traffic
analysis[13].

The input to the anomaly detection algorithm is NetFlow data as described in
the previous section. The algorithm extracts 8 derived features for each flow [8].

2 www.splintered.net/sw/flow-tools
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Basic
Source IP

Source Port

Destination IP

Destination Port

Protocol

Duration

Packets Sent

Bytes per Packet Sent

Derived (Time-window Based)
count-dest Number of flows to unique destina-

tion IP addresses inside the network
in the last T seconds from the same
source

count-src Number of flows from unique source
IP addresses inside the network in
the last T seconds to the same desti-
nation

count-serv-src Number of flows from the source IP
to the same destination port in the
last T seconds

count-serv-dest Number of flows to the destination
IP address using same source port in
the last T seconds

Derived (Connection Based)
count-dest-conn Number of flows to unique destina-

tion IP addresses inside the network
in the last N flows from the same
source

count-src-conn Number of flows from unique source
IP addresses inside the network in
the last N flows to the same desti-
nation

count-serv-src-conn Number of flows from the source IP
to the same destination port in the
last N flows

count-serv-dest-conn Number of flows to the destination
IP address using same source port in
the last N flows

Fig. 2. The set of features used by the MINDS anomaly detection algorithm

Figure 2 lists the set of features which are used to represent a network flow in the
anomaly detection algorithm. Note that all of these features are either present in
the NetFlow data or can be extracted from it without requiring to look at the packet
contents.

Applying the LOF algorithm to network data involves computation of similarity
between a pair of flows that contain a combination of categorical and numerical
features. The anomaly detection algorithm uses a novel data-driven technique for
calculating the distance between points in a high-dimensional space. Notably, this
technique enables meaningful calculation of the similarity between records contain-
ing a mixture of categorical and numerical features shown in Figure 2.

LOF requires the neighborhood around all data points be constructed. This in-
volves calculating pairwise distances between all data points, which is an O(n2)
process, which makes it computationally infeasible for a large number of data points.
To address this problem, we sample a training set from the data and compare all
data points to this small set, which reduces the complexity to O(n ∗ m) where n is
the size of the data and m is the size of the sample. Apart from achieving computa-
tional efficiency, sampling also improves the quality of the anomaly detector output.
The normal flows are very frequent and the anomalous flows are rare in the actual
data. Hence the training data (which is drawn uniformly from the actual data) is
more likely to contain several similar normal flows and far less likely to contain a
substantial number of similar anomalous flows. Thus an anomalous flow will be un-
able to find similar anomalous neighbors in the training data and will have a high
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LOF score. The normal flows on the other hand will find enough similar normal flows
in the training data and will have a low LOF score.

Thus the MINDS anomaly detection algorithm takes as input a set of network
flows3 and extracts a random sample as the training set. For each flow in the input
data, it then computes its nearest neighbors in the training set. Using the nearest
neighbor set it then computes the LOF score (referred to as the Anomaly Score) for
that particular flow. The flows are then sorted based on their anomaly scores and
presented to the analyst in a format described in the next section.

Output of Anomaly Detection Algorithm

The output of the MINDS anomaly detector is in plain text format with each input
flow described in a single line. The flows are sorted according to their anomaly scores
such that the top flow corresponds to the most anomalous flow (and hence most in-
teresting for the analyst) according to the algorithm. For each flow, its anomaly
score and the basic features describing that flow are displayed. Additionally, the
contribution of each feature towards the anomaly score is also shown. The contribu-
tion of a particular feature signifies how different that flow was from its neighbors
in that feature. This allows the analyst to understand the cause of the anomaly in
terms of these features.

score src IP sPort dst IP dPort protocol packets bytes contribution

20826.69 128.171.X.62 1042 160.94.X.101 1434 tcp 0,2) 387,1264) count src conn = 1.00
20344.83 128.171.X.62 1042 160.94.X.110 1434 tcp 0,2) 387,1264) count src conn = 1.00
19295.82 128.171.X.62 1042 160.94.X.79 1434 tcp 0,2) 387,1264) count src conn = 1.00
18717.1 128.171.X.62 1042 160.94.X.47 1434 tcp 0,2) 387,1264) count src conn = 1.00
18147.16 128.171.X.62 1042 160.94.X.183 1434 tcp 0,2) 387,1264) count src conn = 1.00
17484.13 128.171.X.62 1042 160.94.X.101 1434 tcp 0,2) 387,1264) count src conn = 1.00
16715.61 128.171.X.62 1042 160.94.X.166 1434 tcp 0,2) 387,1264) count src conn = 1.00
15973.26 128.171.X.62 1042 160.94.X.102 1434 tcp 0,2) 387,1264) count src conn = 1.00
13084.25 128.171.X.62 1042 160.94.X.54 1434 tcp 0,2) 387,1264) count src conn = 1.00
12797.73 128.171.X.62 1042 160.94.X.189 1434 tcp 0,2) 387,1264) count src conn = 1.00
12428.45 128.171.X.62 1042 160.94.X.247 1434 tcp 0,2) 387,1264) count src conn = 1.00
11245.21 128.171.X.62 1042 160.94.X.58 1434 tcp 0,2) 387,1264) count src conn = 1.00
9327.98 128.171.X.62 1042 160.94.X.135 1434 tcp 0,2) 387,1264) count src conn = 1.00
7468.52 128.171.X.62 1042 160.94.X.91 1434 tcp 0,2) 387,1264) count src conn = 1.00
5489.69 128.171.X.62 1042 160.94.X.30 1434 tcp 0,2) 387,1264) count src conn = 1.00
5070.5 128.171.X.62 1042 160.94.X.233 1434 tcp 0,2) 387,1264) count src conn = 1.00
4558.72 128.171.X.62 1042 160.94.X.1 1434 tcp 0,2) 387,1264) count src conn = 1.00
4225.09 128.171.X.62 1042 160.94.X.143 1434 tcp 0,2) 387,1264) count src conn = 1.00
4170.72 128.171.X.62 1042 160.94.X.225 1434 tcp 0,2) 387,1264) count src conn = 1.00
2937.42 128.171.X.62 1042 160.94.X.75 1434 tcp 0,2) 387,1264) count src conn = 1.00
2458.61 128.171.X.62 1042 160.94.X.150 1434 tcp 0,2) 387,1264) count src conn = 1.00
1116.41 128.171.X.62 1042 160.94.X.255 1434 tcp 0,2) 387,1264) count src conn = 1.00
1035.17 128.171.X.62 1042 160.94.X.50 1434 tcp 0,2) 387,1264) count src conn = 1.00

Table 1. Screen-shot of MINDS anomaly detection algorithm output for UofM data
for January 25, 2003. The third octet of the IPs is anonymized for privacy preser-
vation.

Table 1 is a screen-shot of the output generated by the MINDS anomaly detector
from its live operation at the University of Minnesota. This output is for January

3 Typically, for a large sized network such as the University of Minnesota, data for
a 10 minute long window is analyzed together
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25, 2003 data which is one day after the Slammer worm hit the Internet. All the top
23 flows shown in Table 1 actually correspond to the worm related traffic generated
by an external host to different U of M machines on destination port 1434 (which
corresponds to the Slammer worm). The first entry in each line denotes the anomaly
score of that flow. The very high anomaly score for the top flows(the normal flows
are assigned a score close to 1), illustrates the strength of the anomaly detection
module in separating the anomalous traffic from the normal. Entries 2–7 show the
basic features for each flow while the last entry lists all the features which had a
significant contribution to the anomaly score. Thus we observe that the anomaly
detector detects all worm related traffic as the top anomalies. The contribution
vector for each of the flow signifies that these anomalies were caused due to the
feature – count src conn. The anomaly due to this particular feature translates to
the fact that the external source was talking to an abnormally high number of inside
hosts during a window of certain number of connections.

Table 2 shows another output screen-shot from the University of Minnesota
network traffic for January 26, 2003 data (48 hours after the Slammer worm hit the
Internet). By this time, the effect of the worm attack was reduced due to preventive
measures taken by the network administrators. Table 2 shows the top 32 anomalous
flows as ranked by the anomaly detector. Thus while most of the top anomalous flows
still correspond to the worm traffic originating from an external host to different U
of M machines on destination port 1434, there are two other type of anomalous flows
which are highly ranked by the anomaly detector

1. Anomalous flows that correspond to a ping scan by an external host (Bold rows
in Table 2)

2. Anomalous flows corresponding to U of M machines connecting to half-life game
servers (Italicized rows in Table 2)

3 Summarization

The ability to summarize large amounts of network traffic can be highly valuable
for network security analysts who must often deal with large amounts of data. For
example, when analysts use the MINDS anomaly detection algorithm to score several
million network flows in a typical window of data, several hundred highly ranked
flows might require attention. But due to the limited time available, analysts often
can look only at the first few pages of results covering the top few dozen most anom-
alous flows. A careful look at the tables 1 and 2 shows that many of the anomalous
flows are almost identical. If these similar flows can be condensed into a single line,
it will enable the analyst to analyze a much larger set of anomalous flows. For ex-
ample, the top 32 anomalous flows shown in Table 2 can be represented as a three
line summary as shown in Table 3. We observe that every flow is represented in the
summary. The first summary represents flows corresponding to the slammer worm
traffic coming from a single external host and targeting several internal hosts. The
second summary represents connections made to half-life game servers by an inter-
nal host. The third summary corresponds to ping scans by different external hosts.
Thus an analyst gets a fairly informative picture in just three lines. In general, such
summarization has the potential to reduce the size of the data by several orders of
magnitude. This motivates the need to summarize the network flows into a smaller
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Average Score count src IP sPort dst IP dPort protocol packets bytes
15102 21 63.150.X.253 1161 *** 1434 tcp [0,2) [0,1829)
3833 2 *** 27016 128.101.X.116 *** tcp [2,4) [0,1829)
3371 11 *** 0 *** 2048 icmp *** [0,1829)

Table 3. A three line summary of the 32 anomalous flows in Table 2. The column
count indicates the number of flows represented by a line. “***” indicates that the
set of flows represented by the line had several distinct values for this feature.

but meaningful representation. We have formulated a methodology for summarizing
information in a database of transactions with categorical features as an optimiza-
tion problem [4]. We formulate the problem of summarization of transactions that
contain categorical data, as a dual-optimization problem and characterize a good
summary using two metrics – compaction gain and information loss. Compaction
gain signifies the amount of reduction done in the transformation from the actual
data to a summary. Information loss is defined as the total amount of information
missing over all original data transactions in the summary. We have developed sev-
eral heurisitic algorithms which use frequent itemsets from the association analysis
domain [1] as the candidate set for individual summaries and select a subset of these
frequent itemsets to represent the original set of transactions.

The MINDS summarization module [8] is one such heuristic-based algorithm based
on the above optimization framework. The input to the summarization module is the
set of network flows which are scored by the anomaly detector. The summarization
algorithm first generates frequent itemsets from these network flows (treating each
flow as a transaction). It then greedily searches for a subset of these frequent item-
sets such that the information loss incurred by the flows in the resulting summary
is minimal. The summarization algorithm is further extended in MINDS by incor-
porating the ranks associated with the flows (based on the anomaly score). The
underlying idea is that the highly ranked flows should incur very little loss, while
the low ranked flows can be summarized in a more lossy manner. Furthermore,
summaries that represent many anomalous flows (high scores) but few normal flows
(low scores) are preferred. This is a desirable feature for the network analysts while
summarizing the anomalous flows.

The summarization algorithm enables the analyst to better understand the na-
ture of cyberattacks as well as create new signature rules for intrusion detection
systems. Specifically, the MINDS summarization component compresses the anomaly
detection output into a compact representation, so analysts can investigate numer-
ous anomalous activities in a single screen-shot. Table 4 illustrates a typical MINDS
output after anomaly detection and summarization. Each line contains the average
anomaly score, the number of anomalous and normal flows represented by the line,
eight basic flow features, and the relative contribution of each basic and derived
anomaly detection feature. For example, the second line in Table 4 represents a
total of 150 connections, of which 138 are highly anomalous. From this summary,
analysts can easily infer that this is a backscatter from a denial-of-service attack
on a computer that is outside the network being examined. Note that if an analyst
looks at any one of these flows individually, it will be hard to infer that the flow be-
longs to back scatter even if the anomaly score is available. Similarily, lines 7, 17, 18,
19 together represent a total of 215 anomalous and 13 normal flows that represent
summaries of FTP scans of the U of M network by an external host (200.75.X.2).
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Line 10 is a summary of IDENT lookups, where a remote computer is trying to get
the user name of an account on an internal machine. Such inference is hard to make
from individual flows even if the anomaly detection module ranks them highly.

4 Profiling Network Traffic Using Clustering

Clustering is a widely used data mining technique [10, 24] which groups similar items,
to obtain meaningful groups/clusters of data items in a data set. These clusters
represent the dominant modes of behavior of the data objects determined using
a similarity measure. A data analyst can get a high level understanding of the
characteristics of the data set by analyzing the clusters. Clustering provides an
effective solution to discover the expected and unexpected modes of behavior and
to obtain a high level understanding of the network traffic.

The profiling module of MINDS essentially performs clustering, to find related
network connections and thus discover dominant modes of behavior. MINDS uses the
Shared Nearest Neighbor (SNN) clustering algorithm [9], which can find clusters
of varying shapes, sizes and densities, even in the presence of noise and outliers.
The algorithm can also handle data of high dimensionalities, and can automatically
determine the number of clusters. Thus SNN is well-suited for network data. SNN
is highly computationally intensive — of the order O(n2), where n is the number of
network connections. We have developed a parallel formulation of the SNN clustering
algorithm for behavior modeling, making it feasible to analyze massive amounts of
network data.

An experiment we ran on a real network illustrates this approach as well as the
computational power required to run SNN clustering on network data at a DoD
site [7]. The data consisted of 850,000 connections collected over one hour. On a
16-CPU cluster, the SNN algorithm took 10 hours to run and required 100 Mbytes
of memory at each node to calculate distances between points. The final clustering
step required 500 Mbytes of memory at one node. The algorithm produced 3,135
clusters ranging in size from 10 to 500 records. Most large clusters correspond to
normal behavior modes, such as virtual private network traffic. However, several
smaller clusters correspond to deviant behavior modes that highlight misconfigured
computers, insider abuse, and policy violations that are difficult to detect by manual
inspection of network traffic.

Table 5 shows three such clusters obtained from this experiment. Cluster in Table
5(a) represents connections from inside machines to a site called GoToMyPC.com,
which allows users (or attackers) to control desktops remotely. This is a policy
violation in the organization for which this data was being analyzed. Cluster in
Table 5(b) represents mysterious ping and SNMP traffic where a mis-configured
internal machine is subjected to SNMP surveillance. Cluster in Table 5(c) represents
traffic involving suspicious repeated ftp sessions. In this case, further investigations
revealed that a mis-configured internal machine was trying to contact Microsoft.
Such clusters give analysts information they can act on immediately and can help
them understand their network traffic behavior.

Table 6 shows a sample of interesting clusters obtained by performing a similar
experiment on a sample of 7500 network flows sampled from the University of Min-
nesota network data. The first two clusters (Tables 6(a) and 6(b)) represent Kazaa

(P2P) traffic between a UofM machine and different external P2P clients. Since
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(a)

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
10:00:10.428036 0:00:00 A 4125 B 8200 tcp 5 248
10:00:40.685520 0:00:03 A 4127 B 8200 tcp 5 248
10:00:58.748920 0:00:00 A 4138 B 8200 tcp 5 248
10:01:44.138057 0:00:00 A 4141 B 8200 tcp 5 248
10:01:59.267932 0:00:00 A 4143 B 8200 tcp 5 248
10:02:44.937575 0:00:01 A 4149 B 8200 tcp 5 248
10:04:00.717395 0:00:00 A 4163 B 8200 tcp 5 248
10:04:30.976627 0:00:01 A 4172 B 8200 tcp 5 248
10:04:46.106233 0:00:00 A 4173 B 8200 tcp 5 248
10:05:46.715539 0:00:00 A 4178 B 8200 tcp 5 248
10:06:16.975202 0:00:01 A 4180 B 8200 tcp 5 248
10:06:32.105013 0:00:00 A 4181 B 8200 tcp 5 248
10:07:32.624600 0:00:00 A 4185 B 8200 tcp 5 248
10:08:18.013525 0:00:00 A 4188 B 8200 tcp 5 248
10:08:48.273214 0:00:00 A 4190 B 8200 tcp 5 248
10:09:03.642970 0:00:00 A 4191 B 8200 tcp 5 248
10:09:33.902846 0:00:01 A 4193 B 8200 tcp 5 248

(b)

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
10:01:00.181261 0:00:00 A 1176 B 161 udp 1 95
10:01:23.183183 0:00:00 A -1 B -1 icmp 1 84
10:02:54.182861 0:00:00 A 1514 B 161 udp 1 95
10:03:03.196850 0:00:00 A -1 B -1 icmp 1 84
10:04:45.179841 0:00:00 A -1 B -1 icmp 1 84
10:06:27.180037 0:00:00 A -1 B -1 icmp 1 84
10:09:48.420365 0:00:00 A -1 B -1 icmp 1 84
10:11:04.420353 0:00:00 A 3013 B 161 udp 1 95
10:11:30.420766 0:00:00 A -1 B -1 icmp 1 84
10:12:47.421054 0:00:00 A 3329 B 161 udp 1 95
10:13:12.423653 0:00:00 A -1 B -1 icmp 1 84
10:14:53.420635 0:00:00 A -1 B -1 icmp 1 84
10:16:33.420625 0:00:00 A -1 B -1 icmp 1 84
10:18:15.423915 0:00:00 A -1 B -1 icmp 1 84
10:19:57.421333 0:00:00 A -1 B -1 icmp 1 84
10:21:38.421085 0:00:00 A -1 B -1 icmp 1 84
10:21:57.422743 0:00:00 A 1049 B 161 udp 1 168

(c)

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
10:10:57.097108 0:00:00 A 3004 B 21 tcp 7 318
10:11:27.113230 0:00:00 A 3007 B 21 tcp 7 318
10:11:37.111176 0:00:00 A 3008 B 21 tcp 7 318
10:11:57.118231 0:00:00 A 3011 B 21 tcp 7 318
10:12:17.125220 0:00:00 A 3013 B 21 tcp 7 318
10:12:37.132428 0:00:00 A 3015 B 21 tcp 7 318
10:13:17.146391 0:00:00 A 3020 B 21 tcp 7 318
10:13:37.153713 0:00:00 A 3022 B 21 tcp 7 318
10:14:47.178228 0:00:00 A 3031 B 21 tcp 7 318
10:15:47.199100 0:00:00 A 3040 B 21 tcp 7 318
10:16:07.206450 0:00:00 A 3042 B 21 tcp 7 318
10:16:47.220403 0:00:00 A 3047 B 21 tcp 7 318
10:17:17.231042 0:00:00 A 3050 B 21 tcp 7 318
10:17:27.234578 0:00:00 A 3051 B 21 tcp 7 318
10:17:37.241179 0:00:00 A 3052 B 21 tcp 7 318
10:17:47.241807 0:00:00 A 3054 B 21 tcp 7 318
10:17:57.247902 0:00:00 A 3055 B 21 tcp 7 318
10:19:07.269827 0:00:00 A 3063 B 21 tcp 7 318
10:19:27.276831 0:00:00 A 3065 B 21 tcp 7 318
10:20:07.291046 0:00:00 A 3072 B 21 tcp 7 318

Table 5. Clusters obtained from network traffic at a US Army Fort, representing
(a) connections to GoToMyPC.com, (b) mis-configured computers subjected to SNMP
surveillance and (c) a mis-configured computer trying to contact Microsoft
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Kazaa usage is not allowed in the university, this cluster brings forth an anomalous
profile for the network analyst to investigate. Cluster in Table 6(c) represents traffic
involving bulk data transfers between internal and external hosts; i.e. this cluster
covers traffic in which the number of packets and bytes are much larger than the
normal values for the involved IPs and ports. Cluster in Table 6(d) represents traffic
between different U of M hosts and Hotmail servers (characterized by the port 1863).
Cluster in Table 6(e) represents ftp traffic in which the data transferred is low. This
cluster has different machines connecting to different ftp servers all of which are
transferring much lower amount of data than the usual values for ftp traffic. A key
observation to be made is that the clustering algorithm automatically determines
the dimensions of interest in different clusters. In clusters of Table 6(a),6(b), the
protocol, source port and the number of bytes are similar. In cluster of Table 6(c)
the only common characteristic is large number of bytes. The common character-
istics in cluster of Table 6(d) are the protocol and the source port. In cluster of
Table 6(e) the common features are the protocol, source port and the low number
of packets transferred.

5 Scan Detection

A precursor to many attacks on networks is often a reconnaissance operation, more
commonly referred to as a scan. Identifying what attackers are scanning for can alert
a system administrator or security analyst to what services or types of computers are
being targeted. Knowing what services are being targeted before an attack allows an
administrator to take preventative measures to protect the resources e.g. installing
patches, firewalling services from the outside, or removing services on machines
which do not need to be running them.

Given its importance, the problem of scan detection has been given a lot of at-
tention by a large number of researchers in the network security community. Initial
solutions simply counted the number of destination IPs that a source IP made con-
nection attempts to on each destination port and declared every source IP a scanner
whose count exceeded a threshold [19]. Many enhancements have been proposed re-
cently [23, 11, 18, 14, 17, 16], but despite the vast amount of expert knowledge spent
on these methods, current, state-of-the-art solutions still suffer from high percent-
age of false alarms or low ratio of scan detection. For example, a recently developed
scheme by Jung [11] has better performance than many earlier methods, but its
performance is dependent on the selection of the thresholds. If a high threshold is
selected, TRW will report only very few false alarms, but its coverage will not be
satisfactory. Decreasing the threshold will increase the coverage, but only at the
cost of introducing false alarms. P2P traffic and backscatter have patterns that are
similar to scans, as such traffic results in many unsuccessful connection attempts
from the same source to several destinations. Hence such traffic leads to false alarms
by many existing scan detection schemes.

MINDS uses a data-mining-based approach to scan detection. Here we present
an overview of this scheme and show that an off-the-shelf classifier, Ripper [5], can
achieve outstanding performance both in terms of missing only very few scanners
and also in terms of very low false alarm rate. Additional details are available in
[20, 21].
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(a) Cluster representing Kazaa traffic between a UofM host and external machines

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
1021.03:49:24.854 0:14:44 128.101.X.46 3531 69.3.X.173 3015 tcp 20 857
1021.03:49:37.167 0:14:54 128.101.X.46 3531 62.201.X.143 4184 tcp 19 804
1021.03:49:57.223 0:14:17 128.101.X.46 3531 24.197.X.13 10272 tcp 17 701
1021.03:49:57.224 0:17:00 128.101.X.46 3531 209.204.X.46 4238 tcp 20 835
1021.03:52:07.707 0:13:33 128.101.X.46 3531 24.153.X.185 2008 tcp 15 620

(b) Cluster representing Kazaa traffic between a UofM host and external machines

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
1021.03:49:34.399 0:14:08 128.101.X.139 3531 66.68.X.95 2422 tcp 19 804
1021.03:49:39.215 0:15:07 128.101.X.139 3531 24.81.X.107 56782 tcp 19 814
1021.03:49:44.975 0:15:05 128.101.X.139 3531 65.100.X.201 62654 tcp 22 998
1021.03:49:49.447 0:12:06 128.101.X.139 3531 212.126.X.39 1125 tcp 19 814
1021.03:49:52.759 0:14:44 128.101.X.139 3531 68.165.X.144 3208 tcp 17 706
1021.03:49:53.059 0:14:13 128.101.X.139 3531 151.204.X.207 3712 tcp 20 855
1021.03:49:55.311 0:10:05 128.101.X.139 3531 213.190.X.198 1113 tcp 19 796
1021.03:49:56.771 0:14:30 128.101.X.139 3531 68.59.X.92 4904 tcp 20 857

(c) Cluster representing bulk data transfer between different hosts

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
1021.03:36:53.116 0:31:07 160.94.X.7 2819 61.104.X.142 4242 tcp 3154 129490
1021.03:43:43.575 0:20:24 66.163.X.112 5100 134.84.X.91 1224 tcp 2196 1217668
1021.03:49:20.880 0:18:42 81.129.X.96 6881 134.84.X.14 1594 tcp 3200 4399254
1021.03:50:21.403 0:15:08 211.180.X.131 4670 160.94.X.7 21 tcp 2571 3330750
1021.03:52:49.530 0:10:20 195.29.X.70 27568 160.94.X.50 63144 tcp 2842 113680
1021.03:54:32.854 0:09:00 24.147.X.216 6881 128.101.X.1191 5371 tcp 2677 115353
1021.03:58:14.788 0:09:29 160.94.X.198 6883 24.91.X.133 61259 tcp 2162 2960699
1021.04:00:26.606 0:00:21 128.101.X.11 60297 128.183.X.167 20 tcp 3566 142648

(d) Cluster representing traffic between U of M hosts and Hotmail servers

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
03:58:56.069 00:00:00 207.46.106.183 1863 128.101.169.37 3969 tcp 1 41
03:59:18.521 00:00:30 207.46.108.59 1863 128.101.248.166 1462 tcp 4 189
04:00:04.001 00:00:00 207.46.106.151 1863 134.84.5.26 3963 tcp 1 41
04:00:36.910 00:00:00 207.46.107.39 1863 134.84.255.18 4493 tcp 1 41
04:00:59.570 00:00:00 207.46.106.3 1863 128.101.169.165 2869 tcp 1 92
04:02:56.103 00:00:00 207.46.106.188 1863 134.84.255.22 4715 tcp 1 41
04:03:39.646 00:00:00 207.46.106.151 1863 134.84.5.26 3963 tcp 1 475
04:03:59.178 00:00:50 207.46.106.97 1863 128.101.35.20 1102 tcp 4 176
04:04:22.871 00:00:00 207.46.106.14 1863 134.84.254.126 3368 tcp 1 41
04:04:23.287 00:00:42 207.46.107.20 1863 134.84.19.136 4942 tcp 4 176
04:04:58.611 00:00:02 207.46.106.155 1863 128.101.248.19 3805 tcp 9 705
04:04:59.683 00:00:00 207.46.106.83 1863 128.101.165.97 2763 tcp 1 41
04:05:21.099 00:00:00 207.46.106.59 1863 128.101.21.81 63910 tcp 1 41
04:05:24.395 00:00:00 207.46.106.164 1863 134.84.224.3 4062 tcp 1 41
04:05:34.335 00:00:46 207.46.106.97 1863 128.101.35.20 1102 tcp 6 256
04:07:49.164 00:00:00 207.46.106.29 1863 160.94.156.171 3170 tcp 1 41

(e) Cluster representing FTP traffic with small payload

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
03:58:32.117 00:00:02 128.101.36.204 21 155.210.211.122 1280 tcp 13 1046
04:00:02.326 00:00:05 128.101.36.204 21 12.255.198.216 34781 tcp 18 1532
04:00:53.726 00:00:11 128.101.25.35 21 62.101.126.201 9305 tcp 13 1185
04:02:54.718 00:00:00 128.101.36.204 21 62.101.126.217 27408 tcp 2 144
04:05:31.784 00:00:10 128.101.36.204 21 213.170.40.147 10029 tcp 3 144
04:07:00.800 00:00:01 38.117.149.172 21 134.84.191.5 2968 tcp 10 649
04:07:03.440 00:00:03 128.101.36.204 21 210.162.100.225 7512 tcp 13 998
04:08:05.649 00:00:00 66.187.224.51 21 134.84.64.243 45607 tcp 4 227

Table 6. Five clusters obtained from University of Minnesota network traffic
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Fig. 3. Transformation of raw netflow data in an observation window to the Sum-
mary Data Set. Features are constructed using the set of netflows in the observation
window. Labels for use in the training and test sets are constructed by analyzing
the data over a long period (usually several days)

Methodology

Currently our solution is a batch-mode implementation that analyzes data in win-
dows of 20 minutes. For each 20-minute observation period, we transform the
NetFlow data into a summary data set. Figure 3 depicts this process. With our
focus on incoming scans, each new summary record corresponds to a potential
scanner—that is pair of external source IP and destination port (SIDP). For each
SIDP, the summary record contains a set of features constructed from the raw
netflows available during the observation window. Observation window size of 20
minutes is somewhat arbitrary. It needs to be large enough to generate features that
have reliable values, but short enough so that the construction of summary records
does not take too much time or memory.

Given a set of summary data records corresponding to an observation period,
scan detection can be viewed as a classification problem [24] in which each SIDP,
whose source IP is external to the network being observed, is labeled as scanner

if it was found scanning or non-scanner otherwise. This classification problem can
be solved using predictive modeling techniques developed in the data mining and
machine learning community if class labels (scanner/non-scanner) are available for
a set of SIDPs that can be used as a training set.

Figure 4 depicts the overall paradigm. Each SIDP in the summary data set for
an observation period (typically 20 minutes) is labeled by analyzing the behavior
of the source IPs over a period of several days. Once a training set is constructed,
a predictive model is built using Ripper. The Ripper generated model can now be
used on any summary data set to produce labels of SIDPs.

The success of this method depends on (1) whether we can label the data accu-
rately and (2) whether we have derived the right set of features that facilitate the
extraction of knowledge. In the following sections, we will elaborate on these points.

Features: The key challenge in designing a data mining method for a concrete
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Fig. 4. Scan Detection using an off-the-shelf classifier, Ripper. Building a pre-

dictive model: 20 minutes of NetFlow data is converted into unlabeled Summary
Record format, which is labeled by the Labeler using several days of data. Predictive
model is built on the labeled Summery Records. Scan Detection: 20 minutes of
data is converted into unlabeled Summary Record format. The predictive model is
applied to it resulting in a list of predicted scanners.

application is the necessity to integrate the expert knowledge into the method. A
part of the knowledge integration is the derivation of the appropriate features. We
make use of two types of expert knowledge. The first type of knowledge consists of
a list of inactive IPs, a set of blocked ports and a list of P2P hosts in the network
being monitored. This knowledge may be available to the security analyst or can be
simply constructed by analyzing the network traffic data over a long period (several
weeks or months). Since this information does not change rapidly, this analysis can
be done relatively infrequently. The second type of knowledge captures the behavior
of <source IP, destination port> (SIDP) pairs, based on the 20-minute observation
window. Some of these features only use the second type of knowledge, and others
use both types of knowledge.

Labeling the Data Set: The goal of labeling is to generate a data set that can
be used as training data set for Ripper. Given a set of summarized records cor-
responding to 20-minutes of observation with unknown labels (unknown scanning
statuses), the goal is to determine the actual labels with very high confidence. The
problem of computing the labels is very similar to the problem of scan detection
except that we have the flexibility to observe the behavior of an SIDP over a long
period. This makes it possible to declare certain SIDPs as scanner or non-scanner
with great confidence in many cases. For example, if a source IP s ip makes a few
failed connection attempts on a specific port in a short time window, it may be
hard to declare it a scanner. But if the behavior of s ip can be observed over a long
period of time (e.g. few days), it can be labeled as non-scanner (if it mostly makes
successful connections on this port) or scanner (if most of its connection attempts
are to destinations that never offered service on this port). However, there will sit-
uations, in which the above analysis does not offer any clear-cut evidence one way
or the other. In such cases, we label the SIDP as dontknow. For additional details
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on the labeling method, the reader is referred to [20].

Evaluation

For our experiments, we used real-world network trace data collected at the Uni-
versity of Minnesota between the 1st and the 22nd March, 2005. The University
of Minnesota network consists of 5 class-B networks with many autonomous sub-
networks. Most of the IP space is allocated, but many subnetworks have inactive
IPs. We collected information about inactive IPs and P2P hosts over 22 days, and
we used flows in 20 minute windows during 03/21/2005 (Mon.) and 03/22/2005
(Tue.) for constructing summary records for the experiments. We took samples of
20-minute duration every 3 hours starting at midnight on March 21. A model was
built for each of the 13 periods and tested on the remaining 12 periods. This allowed
us to reduce possible dependence on a certain time of the day, and performed our
experiments on each sample.

Table 7 describes the traffic in terms of number of <source IP, destination port>
(SIDP) combinations pertaining to scanning-, P2P-, normal- and backscatter traffic.

Table 7. The distribution of (source IP, destination ports) (SIDPs) over the various
traffic types for each traffic sample produced by our labeling method

ID Day.Time Total scan p2p normal backscatter dont-know

01 0321.0000 67522 3984 28911 6971 4431 23225
02 0321.0300 53333 5112 19442 9190 1544 18045
03 0321.0600 56242 5263 19485 8357 2521 20616
04 0321.0900 78713 5126 32573 10590 5115 25309
05 0321.1200 93557 4473 38980 12354 4053 33697
06 0321.1500 85343 3884 36358 10191 5383 29527
07 0321.1800 92284 4723 39738 10488 5876 31459
08 0321.2100 82941 4273 39372 8816 1074 29406
09 0322.0000 69894 4480 33077 5848 1371 25118
10 0322.0300 63621 4953 26859 4885 4993 21931
11 0322.0600 60703 5629 25436 4467 3241 21930
12 0322.0900 78608 4968 33783 7520 4535 27802
13 0322.1200 91741 4130 43473 6319 4187 33632

In our experimental evaluation, we provide comparison to TRW [11], as it is one
of the state-of-the-art schemes. With the purpose of applying TRW for scanning
worm containment, Weaver et al. [25] proposed a number of simplifications so that
TRW can be implemented in hardware. One of the simplifications they applied—
without significant loss of quality—is to perform the sequential hypothesis testing
in logarithmic space. TRW then can be modeled as counting: a counter is assigned
to each source IP and this counter is incremented upon a failed connection attempt
and decremented upon a successful connection establishment.
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Our implementation of TRW used in this paper for comparative evaluation draws
from the above ideas. If the count exceeds a certain positive threshold, we declare
the source to be scanner, and if the counter falls below a negative threshold, we
declare the source to be normal.

The performance of a classifier is measured in terms of precision, recall and
F-measure. For a contingency table of

classified as classified as
Scanner not Scanner

actual Scanner TP FN
actual not Scanner FP TN

precision =
TP

TP + FP

recall =
TP

TP + FN

F − measure =
2 ∗ prec ∗ recall

prec + recall
.

Less formally, precision measures the percentage of scanning (source IP, des-
tination port)-pairs (SIDPs) among the SIDPs that got declared scanners; recall
measures the percentage of the actual scanners that were discovered; F-measure
balances between precision and recall.

To obtain a high-level view of the performance of our scheme, we built a model
on the 0321.0000 data set (ID 1) and tested it on the remaining 12 data sets. Figure
5 depicts the performance of our proposed scheme and that of TRW on the same
data sets 4.

One can see that not only does our proposed scheme outperform TRW by a wide
margin, it is also more stable: the performance varies less from data set to data set
(the boxes in Figure 5 appear much smaller).

Figure 6 shows the actual values of precision, recall and F-measure for the dif-
ferent data sets. The performance in terms of F-measure is consistently above 90%
with very high precision, which is important, because high false alarm rates can
rapidly deteriorate the usability of a system. The only jitter occurs on data set #
7 and it was caused by a single source IP that scanned a single destination host
on 614(!) different destination ports meanwhile touching only 4 blocked ports. This
source IP got misclassified as P2P, since touching many destination ports (on a
number of IPs) is characteristic of P2P. This single misclassification introduced 614
false negatives (recall that we are classifying SIDPs not source IPs). The reason for
the misclassification is that there were no vertical scanners in the training set — the
highest number of destination ports scanned by a single source IP was 8, and this
source IP touched over 47 destination IPs making it primarily a horizontal scanner.

4 The authors of TRW recommend a threshold of 4. In our experiments, we found,
that TRW can achieve better performance (in terms of F-measure) when we set
the threshold to 2, this is the threshold that was used in Figure 5, too.
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Fig. 5. Performance comparison between the proposed scheme and TRW. From left
to right, the six box plots correspond to the precision, recall and F-measure of our
proposed scheme and the precision, recall and F-measure of TRW. Each box plot
has three lines corresponding (from top downwards) to the upper quartile, median
and lower quartile of the performance values obtained over the 13 data sets. The
whiskers depict the best and worst performance.
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Fig. 6. The performance of the proposed scheme on the 13 data sets in terms
of precision (topmost line), F-measure (middle line) and recall (bottom line). The
model was built on data set ID 1.

6 Conclusion

MINDS is a suite of data mining algorithms which can be used as a tool by network
analysts to defend the network against attacks and emerging cyber threats. The
various components of MINDS such as the scan detector, anomaly detector and the
profiling module detect different types of attacks and intrusions on a computer
network. The scan detector aims at detecting scans which are the percusors to
any network attack. The anomaly detection algorithm is very effective in detecting
behavioral anomalies in the network traffic which typically translate to malicious
activities such as dos traffic, worms, policy violations and inside abuse. The profiling
module helps a network analyst to understand the characteristics of the network
traffic and detect any deviations from the normal profile. Our analysis shows that
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the intrusions detected by MINDS are complementary to those of traditional signature
based systems, such as SNORT, which implies that they both can be combined
to increase overall attack coverage. MINDS has shown great operational success in
detecting network intrusions in two live deployments at the University of Minnesota
and as a part of the Interrogator [15] architecture at the US Army Research Labs
Center for Intrusion Monitoring and Protection (ARL-CIMP).
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